Patient Mortality Is Associated With Staff Resources and Workload in the ICU: A Multicenter Observational Study*

Antoine Neuraz, MD, MSc^{1,2}; Claude Guérin, MD, PhD^{2,3,4}; Cécile Payet, MSc^{1,5}; Stéphanie Polazzi, MPH,^{1,5}; Frédéric Aubrun, MD, PhD^{2,5,6}; Frédéric Dailler, MD, PhD⁷; Jean-Jacques Lehot, MD, PhD^{2,8}; Vincent Piriou, MD, PhD^{5,9,10}; Jean Neidecker, MD, PhD¹¹; Thomas Rimmelé, MD, PhD^{2,12}; Anne-Marie Schott, MD, PhD^{1,2,5}; Antoine Duclos, MD, PhD^{1,2,5}

Objective: Matching healthcare staff resources to patient needs in the ICU is a key factor for quality of care. We aimed to assess the impact of the staffing-to-patient ratio and workload on ICU mortality. **Design:** We performed a multicenter longitudinal study using routinely collected hospital data.

Setting: Information pertaining to every patient in eight ICUs from four university hospitals from January to December 2013 was analyzed.

Patients: A total of 5,718 inpatient stays were included.

*See also p. 1775.

¹Hospices Civils de Lyon, Pôle Information Médicale Évaluation Recherche, Lyon, France.

²Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France.

³Hospices Civils de Lyon, Service de Réanimation Médicale, Hôpital de la Croix Rousse, Lyon, France.

⁴IMRB INSERM 955Eq13, Créteil, France.

⁵Health Services and Performance Research Lab, Lyon, France

⁶Department of Anesthesiology and Critical Care Medicine, Hospices Civils de Lyon, Croix Rousse Hospital, Lyon, France.

⁷Hospices Civils de Lyon, Service de Réanimation Neurologique, Hôpital Pierre Wertheimer, Groupement Hospitalier Est, Lyon, France.

⁸Hospices Civils de Lyon, Fédération Hospitalo-Universitaire d'Anesthésie-Réanimation, Hôpital Neurologique P. Wertheimer, France.

⁹Hospices Civils de Lyon, Service d'Anesthésie Réanimation, Centre Hospitalier Lyon Sud, Lyon, France.

¹⁰Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Sud, Lyon, France.

¹¹Hospices Civils de Lyon, Hôpital Louis Pradel, Service d'Anesthésie-Réanimation, Lyon, France.

¹²Anesthesiology and Intensive care Medicine, Edouard Herriot hospital, Hospices Civils de Lyon, University Claude Bernard Lyon 1, Lyon, France.

Dr. Neidecker received support for travel from Heart Ware (Travel Expenses paid directly by the company). Dr. Rimmelé consulted and lectured for Gambro-Hospal. The remaining authors have disclosed that they do not have any potential conflicts of interest.

For information regarding this article, E-mail: Antoine.duclos@chu-lyon.fr Copyright © 2015 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

DOI: 10.1097/CCM.000000000001015

Interventions: None.

Measurements and Main Results: We used a shift-by-shift varying measure of the patient-to-caregiver ratio in combination with workload to establish their relationships with ICU mortality over time, excluding patients with decision to forego life-sustaining therapy. Using a multilevel Poisson regression, we quantified ICU mortality-relative risk, adjusted for patient turnover, severity, and staffing levels. The risk of death was increased by 3.5 (95% CI, 1.3–9.1) when the patient-to-nurse ratio was greater than 2.5, and it was increased by 2.0 (95% CI, 1.3–3.2) when the patient-to-physician ratio exceeded 14. The highest ratios occurred more frequently during the weekend for nurse staffing and during the night for physicians (p < 0.001). High patient turnover (adjusted relative risk, 5.6 [2.0–15.0]) and the volume of life-sustaining procedures performed by staff (adjusted relative risk, 5.9 [4.3–7.9]) were also associated with increased mortality.

Conclusions: This study proposes evidence-based thresholds for patient-to-caregiver ratios, above which patient safety may be endangered in the ICU. Real-time monitoring of staffing levels and workload is feasible for adjusting caregivers' resources to patients' needs. (*Crit Care Med* 2015; 43:1587–1594)

Key Words: intensive care units; medical staffing; mortality; multilevel modeling; nurse staffing

atching healthcare staff resources with patients' needs is a key factor to maintain safe care in ICUs. Adequate patient-to-nurse (P/N) and patient-to-physician (P/P) ratios may be associated with higher survival rates and a lower risk of failure to rescue (1, 2). However, the optimal ratios have not been completely established. An optimal ratio should be that above which a significant deterioration in patient outcome is observed. Although arbitrary thresholds have been set, these recommendations are based on experts' opinions rather than on scientific evidence (3–6). Several studies assessing the influence of nurse staffing on mortality

Critical Care Medicine www.ccmjournal.org 1587

resulted in inconsistent findings (7–14). Some works found a significant association between mortality and P/N ratio (7, 10–13), but others did not (8, 9, 14–16). Even though it is commonly accepted that the physician staffing level affects mortality, no objective P/P ratio has been worked out to date (17).

Although it is commonly believed that patient mortality is influenced by the number of caregivers in charge of patient care, there is a lack of evidence to support this assumption. In principle, to guarantee consistent patient outcomes, staff resources should continuously mirror the burden of workload that intensive care teams are facing. In addition to staffing levels, patient severity and volume of life-sustaining procedures were performed; the workload is traditionally estimated based on patient turnover (18–20). Here, we assumed that both the staffing level and the burden of clinical activity may influence ICU patients' outcomes. We used a shift-by-shift varying measure of patient-to-caregiver ratios in combination with workload assessment to establish their relationships with ICU mortality over time.

METHODS

Study Design and Data Sources

We performed a multicenter longitudinal study in eight adult ICUs located in four university hospitals in Lyon, France. Of the eight ICUs, two were mostly medically oriented, four were mostly surgically oriented, and two were mixed medical-surgical units. All were closed ICUs directed by anesthesiologists, medical intensivists, or mixed medical teams.

Three large databases used for routine tasks were merged to accurately establish where and when caregivers worked and patients were treated: 1) claims data used for billing inpatient stay, 2) the day-by-day, hour-by-hour planning of medical and nurse staff databases, and 3) the human resources database containing information about qualifications and affiliations of staff members. In addition, we reviewed the medical records of every deceased patient to accurately identify any decision to forego life-sustaining therapy (DFLST) during the ICU stay. According to the French law, our study was exempt from approval per local ethics committee.

Information pertaining to every patient admitted to these ICUs between January 1 and December 31, 2013, was used in the present analysis. Standard discharge abstracts for every hospitalization contained compulsory information about patients (ie, gender, age, and residence), admission context (ie, emergency status, surgical, or medical care), the Simplified Acute Physiology Score (SAPS) II (21) measured over the first 24 hours of ICU admission, a selection of life-sustaining medical procedures (LSP; eg, mechanical ventilation, vasopressive drugs, renal replacement therapy, and extracorporeal membrane oxygenation), and 31 coexisting conditions extracted from the Elixhauser list of comorbidities (22).

We extracted caregiver presence at work on an hourly basis for each ICU employee (ie, nurses and physicians) and for each day of the study period. Work was mainly organized on a 12-hour basis but, during the day, additional staff with varying work hours could be present. To minimize staffing variations observed during each period while maintaining a sufficient granularity, shift was selected as a temporal unit for analysis. A shift was split into the following four time frames: 7:00 AM to 0:59 PM, 1:00 PM to 6:59 PM, 7:00 PM to 0:59 AM and 1:00 AM to 6:59 AM.

Main Outcome and Key Predictors

The primary outcome was mortality at time of ICU discharge by shift, excluding patients for whom a DFLST was made. Primary outcome was initially adjusted for age, gender, admission context, emergency status, SAPS II, and comorbidities.

Apart from these common confounding factors, the staffing and the caregiver workload were used as key predictors. Nurse and medical staffing were defined as P/N and P/P ratios, respectively, by shift. We split P/N into the following five categories: less than or equal to 1:1, greater than 1:1 to less than or equal to 1.5:1, greater than 1.5:1 to less than or equal to 2:1, greater than 2:1 to less than or equal to 2.5:1, and greater than 2.5:1 (2:1 meaning two patients for one nurse). The following four categories for P/P were defined as follows: less than or equal to 8:1, greater than 8:1 to less than or equal to 10:1, greater than 10:1 to less than or equal to 14:1, and greater than 14:1 (10:1 meaning 10 patients for one physician). Medical residents were included in the count of physicians. We calculated the resident-to-physician ratio (R/P) as the number of residents divided by the number of physicians.

Two additional metrics were used to describe workload. The turnover of patients was measured by dividing the cumulative number of ICU admission and ICU discharge (excluding deaths) during a shift with the number of patients actually staying in the ICU during that shift (20). The mean number of LSPs per patient performed during a shift was also considered a marker of both the workload and the patient severity. We reasoned that the higher the LSP number, the higher the number of procedures performed by the team and presumably the higher the number of failing organs.

Statistical Analysis

Categorical variables are presented using absolute and relative frequencies and were compared using the chi-square test. Continuous variables are presented using mean and one SD and were compared using the Mann-Whitney *U* test. Shifts with missing values regarding staffing resources were not included in the analyses.

To explore the determinants of ICU mortality per shift and to adjust for site in analysis, we performed multilevel Poisson regression taking into account the clustering effect of patients within the ICU (23). Death was the outcome of interest in the model, while staffing and workload were the main predictors. To control for potential confounding variables, patients' characteristics were a priori selected as clinically important covariates. The proportion of surgical cases versus medical cases was used to adjust on the type of patient case-mix admitted to ICU. The final multivariate model included the following variables: P/N, P/P and residents-to-physicians ratios, patient turnover, number of LSP, proportion of men, proportion of surgical

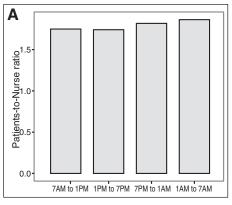
cases, SAPSII, and number of comorbidities. The results are presented as adjusted relative risks with their corresponding 95% CIs. Potential variations over time in the highest values of P/N and P/P ratios, as well as patient turnover, are described according to shifts and calendar days. All analyses were performed using R version 3.02 and the package lme4 (glmer function) (24, 25).

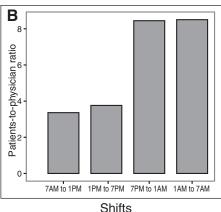
RESULTS

Population and Shifts Description

A total of 5,718 patients were hospitalized in eight ICUs during the 1-year study period (**Table 1**). The mean number of patients per shift ranged from 8.3 to 22.2 according to ICU size. Overall, 67% of them were men, aged 60.6 ± 6.3 years, and SAPSII was 50.5 ± 10.6 with an average of 2.2 comorbidities per patient. Regarding the

TABLE 1. Description of Studied ICUs


	Hos	pital A	Hospital B		Hospital C		Hospital D		
	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	Total
	n = 393	n = 973	n = 578	n = 353	n = 647	n = 1,520	n = 590	n = 644	n = 5,718
No. of deaths (%)	86 (22)	114 (8.5)	138 (23)	68 (19)	69 (11)	127 (8)	155 (26)	94 (14)	851 (15)
No. of deaths (no decision to forego life-sustaining therapy) (%)	41 (10)	36 (3)	53 (9)	25 (7)	44 (7)	110 (7)	72 (12)	43 (7)	424 (7)
Description of staff	(per shift):								
Mean patients- to-nurse ratio (SD)	2 (0.5)	1.7 (0.5)	1.7 (0.3)	1.6 (0.3)	1.6 (0.3)	1.7 (0.3)	2 (0.4)	1.9 (0.5)	1.8 (0.4)
Mean patients- to-physician ratio (sd)	5.1 (3.3)	4.5 (2.2)	6.0 (5.2)	3.2 (1.4)	5.9 (3.4)	9.5 (3.3)	7.2 (4.9)	3.9 (1.9)	5.6 (3.2)
Description of workl	oad (per shi	ft)							
Mean patient turnover (SD) ^a	5.8 (9.3)	10 (11.0)	7.1 (9.4)	5.8 (9.2)	5.1 (6.6)	8.4 (9.8)	5.6 (7.6)	7.5 (10.0)	6.9 (9.0)
Mean number of life-sustaining procedure (SD)b	1.3 (0.4)	1.2 (0.3)	1.6 (0.3)	1.8 (0.3)	0.9 (0.2)	1.3 (0.2)	1.2 (0.2)	1.1 (0.3)	1.3 (0.3)
Description of patier	nts (per shift)							
Mean number of patients (SD)	8.3 (1.4)	12. 5(2.7)	11.9 (2.6)	8.7 (1.3)	17.0 (2.6)	22.2 (4.3)	12.2 (2.2)	11 (2.2)	13.3 (5.1)
Mean proportion of men (SD)	0.7 (0.2)	0.7 (0.1)	0.7 (0.1)	0.7(0.17)	0.6 (0.1)	0.6 (0.1)	0.6 (0.1)	0.7 (0.2)	0.7 (0.1
Mean age (SD)	63.8 (5.5)	56.4 (6.4)	63.6 (5.5)	60.6 (4.4)	53.9 (3.6)	61.4 (3.2)	65.8 (5.6)	58.4 (5.3)	60.6(4.9
Mean proportion of surgical cases (SD)	0.5 (0.2)	0.7 (0.1)	0.2 (0.1)	0.7 (0.1)	0.8 (0.1)	0.9 (0.1)	0.2 (0.1)	0.7 (0.1)	0.6 (0.1)
Mean Simplified Acute Physiology Score II (SD)	55.5 (6.9)	52.8 (6.1)	46.4 (6.1)	58.2 (8.8)	36.4 (4.3)	49.8 (5.0)	62.4 (6.1)	52.7 (8.0)	50.5(6.4
Mean number of comorbidities (SD)c	2.6 (0.8)	2.8 (0.6)	1.9 (0.5)	2.1 (0.5)	1.9 (0.4)	2.4 (0.5)	2.3 (0.5)	1.8 (0.5)	2.2 (0.5)


^aNumber of admissions plus discharges (excluding death) over the census during the shift, in percentage.

^bMean number of life-sustaining procedures per patient-day.

^cConditions extracted from the Elixhauser list of comorbidities (22).

Deaths with and without decision to forego life-sustaining therapy are described with their number and proportion; all other variables are described with their mean/proportion and sp.

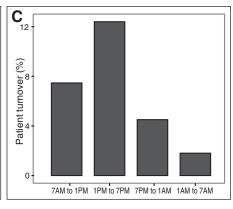


Figure 1. Ratios of patients per nurse and per ICU physician and patient turnover by shift. A, Patients-to-nurse ratio. B, Patients-to-physician ratio. C. Patient turnover.

workload, there were 1.3 LSPs per patient-shift and a mean patient turnover of 6.9%. The overall mortality rate was 14.9% (851/5,718) and 7% (424/5,718) of deaths occurred without a DFLST order.

The mean P/N was stable across the shifts, with an average of 1.8 patients per nurse (**Fig. 1A**). On the contrary, P/P varied dramatically between day and night shifts, with a mean of 3.6 patients per physician during the day versus 8.5 during the night (**Fig. 1B**). The turnover varied depending on the hour of the day. It was maximal during the day shifts, with a mean of 9.9 between 7:00 am and 6:59 pm, and lower during night shifts, with a mean of 3.2 between 7:00 pm and 6:59 am (**Fig. 1C**).

Relationship of Patients to Caregivers' Ratio and ICU Mortality

A total of 11,666 shifts in the eight ICUs were studied over 1 year (14 shifts with missing values were not included in the analysis), including 415 shifts during which at least one death occurred (**Table 2**). The fully adjusted model, taking into account both staffing and workload levels, showed an increased risk of mortality, with the highest values for P/P and P/N. The ICU risk of death increased by a factor of 3.5 (1.3–9.1) when the number of patients was above 2.5 per nurse and by a factor of 2.0 (1.3–3.2) when the number of patients was above 14 per physician. The presence of medical residents did not influence inpatient mortality (p = 0.6). Patient turnover supported a adjusted relative risk of 5.9 (2–15) for ICU deaths. SAPSII and LSP were also associated with increased ICU mortality.

The highest values of P/P (ie, > 14 patients per physician) were represented during 3% of the time shifts and occurred mainly at night (87% vs 13%; p < 0.001) (**Fig. 2A**). The highest values of P/N (ie, > 2.5 patients per nurse) affected 5% of the time shifts. These were uniformly distributed across the day (p = 0.53) (**Fig. 2B**) but occurred more frequently during the weekend (p < 0.001) (**Fig. 3B**).

DISCUSSION

This multicenter study proposes evidence-based thresholds of five patients to two nurses and 14 patients to one physician, above which there is an increase in ICU mortality. Those shifts with inadequate staffing resources, given the patients' needs, occurred mostly during weekends for nurses and at nights for physicians. In addition, higher risk of death was strongly influenced by heavy workload during shifts based on increased patient turnover and volume of LSPs performed by ICU teams.

Although some subsets of these parameters have been explored previously, the literature is scarce regarding the shift-by-shift analysis of both staffing and workload measures in a multicenter setting. Studies are traditionally based on fixed levels of staff (ie, ratios fixed a priori for periods of a few months) (26), instead of considering daily staff variations. This lack of granularity may explain why there is currently inconsistent association between medical staffing and patient outcome (2). In agreement with the guidelines of the Society of Critical Care Medicine for safe care, the present results clearly highlight a threshold effect regarding medical staff size relative to the number of patients and their needs. The present results also support previous observations, suggesting a potential relationship between ICU mortality and nurse staffing (2, 7, 10–13, 16, 20).

This study opens the way to an automated monitoring system. All types of data computed in the present work were collected routinely. Therefore, automating the process to provide a continuous follow-up of the adequacy of staffing levels and workload is possible. Such a monitoring tool would help manage staffing adequately and optimize patient flow. However, using routinely collected data to investigate preventable deaths caused by failures in ICU organization have clear limitations. In addition to excluding deaths with DFLST orders from our dataset, a solution would be to collect specific causes of death, such as "failure to rescue," which may reflect an unbalanced staffing level (1). In addition, we primarily used a combination of patient turnover and LSPs to assess work intensity at the team level. In the studied ICUs and in the majority of French ICUs, there is no consult team to take care of less-sick patients in ICUs. The same team is in charge of new admissions and other patients at the same time. So the observed workload is the sum of the patients in the ICU and new admissions.

TABLE 2. Characteristics of Shifts Without Any Death or With At Least One Death

	Shifts Without Death (n = 11,251)	Shifts With ≥ 1 Death (<i>n</i> = 415)	Unadjusted RR (95% CI)	Adjusted RR (95% CI)
Patients-to-nurse ratios (%)				
< 1:1	290 (2.6)	5 (1.2)	1	1
1:1-1.5:1	2,748 (24.4)	91 (21.9)	1.6 (0.8-2.9)	1.9 (0.7-4.6)
1.5:1-2:1	5,143 (45.7)	181 (43.7)	1.7 (0.9-3.1)	2.0 (0.8-5.0)
2:1-2.5:1	2,461 (21.9)	103 (24.8)	1.8 (0.9-3.2)	2.3 (0.9-5.8)
> 2.5:1	609 (5.4)	35 (8.4%)	2.2 (1.2-4.3)	3.5 (1.3-9.1) ^a
Patients-to-physician ratios (%)				
< 8	8,144 (72.4)	256 (61.7)	1	1
8:1-10:1	1,391 (12.4)	59 (14.2)	1.0 (0.8-1.3)	0.9 (0.7-1.3)
10:1-14:1	1,408 (12.5)	74 (17.8)	1.0 (0.8-1.3)	1.1 (0.8–1.5)
> 14:1	308 (2.7)	26 (6.3)	1.5 (1.0-2.1)	2.0 (1.3-3.2) ^a
Residents-to-physicians ratio (sd)	0.27 (0.26)	0.26 (0.25)	0.7 (0.4-1.1)	0.9 (0.5-1.5)
Mean patient turnover (sp)b	6.8 (9.2)	7.8 (11)	2.3 (1.1-4.7)	5.6 (2.0-15.0)°
Mean number of life-sustaining procedure (SD) ^d	1.3 (0.4)	1.4 (0.4)	4.4 (3.5-5.4)	5.9 (4.3-7.9)°
Mean proportion of men (sp)	0.6 (0.1)	0.6 (0.1)	1.6 (0.9-2.8)	1.8 (0.8–3.8)
Mean proportion of surgical cases (sp)	0.6 (0.3)	0.6 (0.3)	0.6 (0.4-1.0)	0.5 (0.2-1.1)
Mean Simplified Acute Physiology Score IIe (SD)	50 (11)	52 (11)	1.5 (1.4-1.7)	1.5 (1.3–1.7)°
Mean number of comorbidities (SD)f	2.2 (0.6)	2.3 (0.6)	1.1 (0.9-1.3)	0.9 (0.8-1.1)

RR = relative risk.

Risk ratios correspond to a bivariate Poisson mixed model with random effect on ICU. Adjusted risk ratios and *p* values correspond to a multivariate Poisson mixed model with random effect on ICU. The multivariate model includes the following variables: patient-to-nurse, patient-to-physician, and residents-to-physicians ratios, patient turnover, number of LSP, proportion of men, proportion of surgical cases, SAPSII and number of comorbidities.

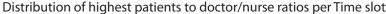
Representing the workload as a combination of LSPs, patient severity and turnover allowed us to take into account both patients present in the ICU and new admissions. Tracking the caregivers' well-being and how they are experiencing the burdens of daily activities may provide additional information (27). Furthermore, several nursing workload scores have been previously developed, such as the therapeutic intervention scoring system, the nursing activities score, or the nine equivalents of nursing manpower use score (28). Unfortunately, these metrics were not present in available databases.

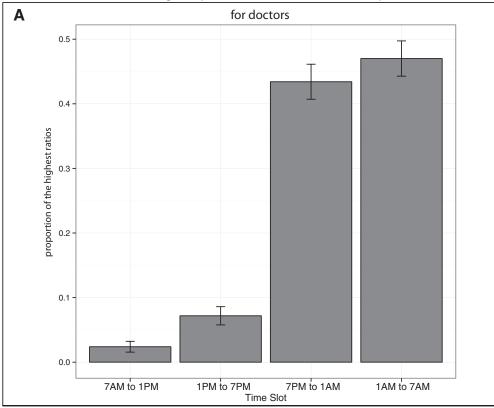
In terms of generalizability, this study was performed over eight closed ICUs in four academic hospitals. Despite a limited sample size, we think that the findings can probably be generalized to the other French academic hospitals given that their organization does not vary much. Also, our analyses showed no influence of the number of residents per physician on patient mortality. Therefore, we can argue that our findings may also apply to nonacademic hospitals. Although any ICU with an organization similar to the ICUs from this study could

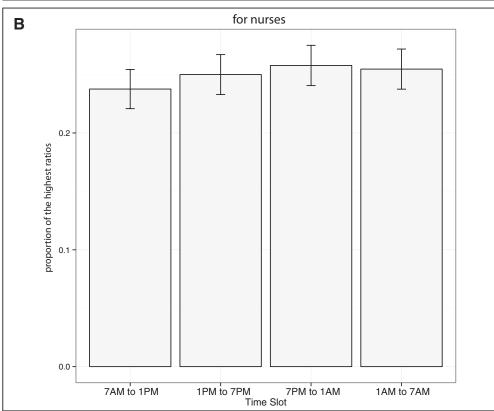
benefit from the present results, it would be interesting to validate our findings although replication studies in other countries. The optimal P/P ratios may be different in the context of open ICUs, where the physician formally responsible for the patient is not the intensivist and physicians from outside of the ICU may participate in patient care. Another limitation to this study is that no adjustment was feasible regarding the specialty of ICU physicians (ie, intensivist, anesthesia, and mixed) that may have influenced patients' outcomes.

Representing a real picture of daily workload in the ICU, this study raises further unresolved questions. What are the exact conditions of excessive workload and insufficient staffing that lead to avoidable deaths in the ICU? Ideally, investigating shift-to-shift variations of caregivers staffing and patient turnover would allow identification of which caregiver is assigned to a given patient at any time in a particular ICU. Here, we provided this information at the unit level at each time period. The next step would be to introduce the linking of individual data between patients and caregivers, allowing for a dynamic

 $^{^{}a}p < 0.01$.

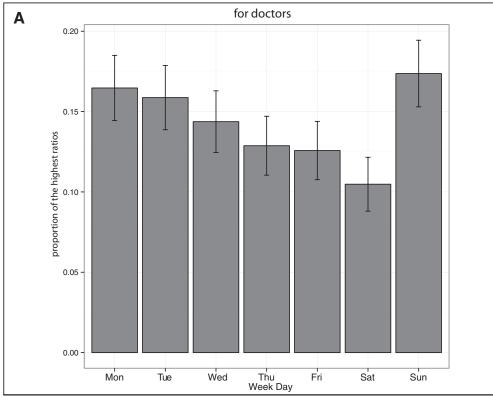

bNumber of admissions plus discharges (excluding death) over the census during the shift, in percentage.


[°]p < 0.001


dMean number of life-sustaining medical procedure (LSPs; Annex 1) per patient-day.

^eRisk ratios for Simplified Acute Physiology Score (SAPS) II are computed for 10-point increase.

^fConditions extracted from the Elixhauser list of comorbidities (22).



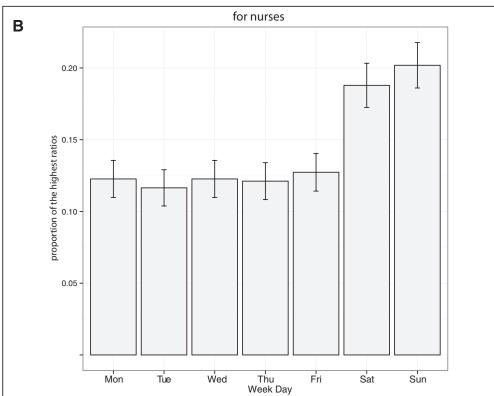


Figure 2. Distribution of highest ratios across shifts. Highest ratios correspond to > 2.5 patients per nurse and > 14 patients per physician.

analysis of their interactions (29, 30). Indeed, workload may not be uniformly distributed over time across different team members. For example, two patients assigned to the same caregiver may need urgent care, whereas other caregivers might simultaneously experience a lower workload. In this situation, it is likely that the latter helps the former. A solution to this issue was proposed in some ICUs. Teams dedicated to managing new ICU admissions have been implemented in a delimited ICU zone. The performance of such organizations, which aim to prevent ICU malfunction that results from excessive turnover, should be assessed. Furthermore, what are the determinants of clinical team performance, and how can we make efficient teams? Quantifying the patient-tocaregiver ratio in real time provides an overall view of the appropriate staffing level. A more accurate evaluation of the capability of a team to properly handle difficult situations represents the next step. Analysis of individual characteristics and interactions among team members should be considered because team composition and familiarity might influence its resilience to intense workload variations (31). Thus, highperformance teams would maintain high levels of quality when exposed to stressful situations, and teamwork skills may surpass the sum of individual talent. Staff experience, or the number of shifts involving the same colleagues, may reflect expertise and how well people communicate with each other through the acquisition of skills that allow for quick responses that can guarantee patient safety (32). In the same

Distribution of highest patients to doctor/nurse ratios per Day of the week

Figure 3. Distribution of highest ratios across days of the week. Highest ratios correspond to > 2.5 patients per nurse and > 14 patients per physician.

manner, safety culture in the team may play a role in patient safety. Methods such as crew resource management imported from aviation were implemented in surgical settings (33). Team training might be useful to improve patient outcome in ICUs (34, 35).

This study proposes evidence-based ratios of patients per nurse and physician in the context of ICUs. Our findings support recommendations for adapting caregivers' resources to patients' needs in real time. Insufficient staffing above the observed maximum thresholds showed an increased risk of mortality. Particular attention should be paid to critical periods identified to be at risk high patient-to-caregiver ratios (ie, on weekends for nurses and at night for physicians). Moreover, identification of patient turnover as an independent risk factor of mortality should lead to a thoughtful management of patient influx during a single shift. Delaying admissions during periods when teams are experiencing a heavy workload with unbalanced patients-to-caregivers ratios could prevent ICU disorganization. However, heterogeneity staffing patterns in ICUs around the world cannot be overlooked: larger studies involving different countries will be needed to validate these findings. Because all data used in this study were routinely collected in hospital information systems, real-time monitoring of staffing levels and workload with dedicated alarms is feasible. Such monitoring of patient-tocaregiver ratios would help not only to have sufficient resources for guaranteeing patient safety when needed but also to avoid wasting in case of temporary overstaffing. Hence, continuous balancing between staffing resources and workload may increase care efficiency in ICUs. Otherwise, a cost-effective solution would consist of smooth-

ing activity and staff presence over time according to threshold recommendations.

Critical Care Medicine www.ccmjournal.org 1593

REFERENCES

- Griffiths P, Jones S, Bottle A: Is "failure to rescue" derived from administrative data in England a nurse sensitive patient safety indicator for surgical care? Observational study. Int J Nurs Stud 2013; 50:292–300
- West E, Barron DN, Harrison D, et al: Nurse staffing, medical staffing and mortality in Intensive Care: An observational study. Int J Nurs Stud 2014; 51:781–794
- Bray K, Wren I, Baldwin A, et al: Standards for nurse staffing in critical care units determined by: The British Association of Critical Care Nurses, The Critical Care Networks National Nurse Leads, Royal College of Nursing Critical Care and In-flight Forum. Nurs Crit Care 2010; 15:109–111
- 4. Ministère de l'emploi et de la solidarité: Décret no 2002-465 du 5 avril 2002 relatif aux établissements de santé publics et privés pratiquant la réanimation et modifiant le code de la santé publique [Internet]. JO 2002; [cited November 18, 2013]. Available at: http:// www.srlf.org/Data/upload/Files/20121217_CE_DecretReanimation2002.pdf
- ESICM Working Group on Quality Improvement, Valentin A, Ferdinande P: Recommendations on basic requirements for intensive care units: Structural and organizational aspects. *Intensive Care Med* 2011; 37:1575–1587
- Ward NS, Afessa B, Kleinpell R, et al; Members of Society of Critical Care Medicine Taskforce on ICU Staffing: Intensivist/patient ratios in closed ICUs: A statement from the Society of Critical Care Medicine Taskforce on ICU Staffing. Crit Care Med 2013; 41:638–645
- Tarnow-Mordi WO, Hau C, Warden A, et al: Hospital mortality in relation to staff workload: A 4-year study in an adult intensive-care unit. Lancet 2000; 356:185–189
- Dimick JB, Swoboda SM, Pronovost PJ, et al: Effect of nurse-topatient ratio in the intensive care unit on pulmonary complications and resource use after hepatectomy. Am J Crit Care 2001; 10:376–382
- Metnitz PG, Reiter A, Jordan B, et al: More interventions do not necessarily improve outcome in critically ill patients. *Intensive Care Med* 2004; 30:1586–1593
- Person SD, Allison JJ, Kiefe Cl, et al: Nurse staffing and mortality for Medicare patients with acute myocardial infarction. Med Care 2004; 42:4–12
- Tourangeau AE, Doran DM, McGillis Hall L, et al: Impact of hospital nursing care on 30-day mortality for acute medical patients. J Adv Nurs 2007; 57:32–44
- Stone PW, Mooney-Kane C, Larson EL, et al: Nurse working conditions and patient safety outcomes. Med Care 2007; 45:571–578
- 13. Cho SH, Hwang JH, Kim J: Nurse staffing and patient mortality in intensive care units. *Nurs Res* 2008; 57:322–330
- Kiekkas P, Sakellaropoulos GC, Brokalaki H, et al: Association between nursing workload and mortality of intensive care unit patients. J Nurs Scholarsh 2008; 40:385–390
- Kane RL, Shamliyan TA, Mueller C, et al: The association of registered nurse staffing levels and patient outcomes: Systematic review and meta-analysis. Med Care 2007; 45:1195–1204
- Numata Y, Schulzer M, van der Wal R, et al: Nurse staffing levels and hospital mortality in critical care settings: Literature review and metaanalysis. J Adv Nurs 2006; 55:435–448

- Afessa B: Intensive care unit physician staffing: Seven days a week,
 hours a day. Crit Care Med 2006; 34:894–895
- Unruh LY, Fottler MD: Patient turnover and nursing staff adequacy. Health Serv Res 2006; 41:599–612
- Evans WN, Kim B: Patient outcomes when hospitals experience a surge in admissions. J Health Econ 2006; 25:365–388
- Needleman J, Buerhaus P, Pankratz VS, et al: Nurse staffing and inpatient hospital mortality. N Engl J Med 2011; 364:1037–1045
- Le Gall JR, Lemeshow S, Saulnier F: A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. *JAMA* 1993; 270:2957–2963
- 22. Elixhauser A, Steiner C, Harris DR, et al: Comorbidity measures for use with administrative data. *Med Care* 1998; 36:8–27
- Gelman A, Hill J: Data Analysis Using Regression and Multilevel/ Hierarchical Models. Cambridge, NY: Cambridge University Press; 2007
- R Development Core Team: R: A Language and Environment for Statistical Computing. [Internet]. 2014. Available at: http://www.Rproject.org
- Bates D, Maechler M, Bolker B: Ime4: Linear mixed effects models using Eigen and S4. 2014. ArXiv e-print; submitted to Journal of Statistical Software. Available at: http://arxiv.org/abs/1406.5823. Accessed March 31, 2015
- 26. Dara SI, Afessa B: Intensivist-to-bed ratio: Association with outcomes in the medical ICU. Chest 2005; 128:567–572
- Wallace JE, Lemaire JB, Ghali WA: Physician wellness: A missing quality indicator. Lancet 2009; 374:1714–1721
- Debergh DP, Myny D, Van Herzeele I, et al: Measuring the nursing workload per shift in the ICU. *Intensive Care Med* 2012; 38:1438–1444
- Gray JE, Davis DA, Pursley DM, et al: Network analysis of team structure in the neonatal intensive care unit. *Pediatrics* 2010; 125: e1460-e1467
- Cusumano-Towner M, Li DY, Tuo S, et al.: A social network of hospital acquired infection built from electronic medical record data [Internet]. J Am Med Inform Assoc 2013 [cited March 6, 2013].
 Available at: http://jamia.bmj.com/content/early/2013/03/05/amia-jnl-2012-001401
- Xu R, Carty MJ, Orgill DP, et al: The teaming curve: A longitudinal study of the influence of surgical team familiarity on operative time. Ann Surg 2013; 258:953–957
- Choudhry NK, Fletcher RH, Soumerai SB: Systematic review: The relationship between clinical experience and quality of health care. Ann Intern Med 2005; 142:260–273
- Neily J, Mills PD, Young-Xu Y, et al: Association between implementation of a medical team training program and surgical mortality. *JAMA* 2010; 304:1693–1700
- Reader TW, Flin R, Mearns K, et al: Developing a team performance framework for the intensive care unit. Crit Care Med 2009; 37: 1787–1793
- Meurling L, Hedman L, Sandahl C, et al: Systematic simulationbased team training in a Swedish intensive care unit: A diverse response among critical care professions. BMJ Qual Saf 2013; 22:485–494